For high schools

The Physics and Astronomy staff at Curtin University are available to present on the below topics at your school.

To arrange a time for a staff member to visit your school, please click on the staff members name to visit their respective profile for further contact information.


Igor Bray, John Curtin Distinguished Professor

The Physics of Life, Universe and Everything

Words like momentum and pressure are Physics terms that are a part of our everyday language, but there is so much more that Physics has to offer in helping to understand and solve problems of societies. Complexities of gun control, management of refugees, tension between individual versus group needs, and many more areas are able to be addressed utilizing standard concepts of Physics. In the talk, as a way of introduction, we will give a brief overview of the research done in Theoretical Physics at Curtin, and then begin the presentation by stating various concepts in Physics that are useful to understand societal problems. After discussing some specific examples, the audience will be invited to raise topics of interest to them to see if Physics can assist in their understanding and solution.

Choosing the right University for you

The transition from High School to University can be particularly challenging. Typically, in Australia students choose to stay in the same city where they grew up, but now the competition for top students is so intense that substantial financial incentives are available to attract students interstate, and even overseas. This competition is a good thing, but with ever increasing globalisation of education choosing the right University is more difficult than ever. Fortunately, there are now some tools available to help decide, but only if used judiciously. In the talk we will discuss some of these tools and the many issues surrounding making a well-informed choice, with plenty of time for questions.

Physics for Life: careers with a Physics degree

I am often asked “what job will I get if I get a Physics degree?” I reply quite honestly “anything and everything”. While this is true it is not very satisfying because it does not seem to provide any useful information. Accordingly, in the talk I begin with giving some statistical information on salaries of Physics graduates and show the various government and industry sectors who employ them. This is followed by some specific anecdotes of what happened to my friends, colleagues and recent Curtin graduates. Collectively, the diversity of their careers show why Physics graduates have some of the most exciting career prospects of any university graduate.

Jacob Martin, Research Associate

Journey to the centre of a flame

Everyone can appreciate the beauty of a candle flame, the flickering light and glowing embers. But how do they work? What makes the flame yellow and the embers glow red? What is burning in the flame? What does a candle flame look like in space? Using simple experiments, that can be conducted remotely or in person, these questions will be answered using the art of scientific observation. By journeying to the centre of a flame we will be able to appreciate the flame and embers in an entirely new way and be able to use this knowledge to reduce the pollution around us, improve plant growth and combat climate change!

Ketesse Hansen, Technical Officer

Opportunities in Overalls

A journey with physics – one woman’s adventures in trying to not fall off boats, dress-up in quarantine outfits as quickly as possible, play with lasers without losing an eye, talking (I’m good at that one), organising things, stuff and people, and travelling, all in the name of science! Bonus overview of the weird and wonderful places some of her friends (other young scientists and engineers) have found themselves since earning their degrees.

Ming Lim, Technical Operations Coordinator

Undercover engineer

Is STEM for everyone? Definitely not! I talk about what sort of a person I believe it would take to have a happy and fulfilling career in the STEM field, drawing on my wide and varied experiences when I went undercover and took on careers outside of STEM.

After graduating as an Engineer, I took a detour out of the STEM environment to chase the opportunities that life threw my way, from running my own business, becoming a pesky door to door salesman, a telemarketer, a stock market analyst, financial advisor, author, and outdoor adventure instructor. I finally came full circle back to a career in the sciences. I explain my motivation and passion for taking on these seemingly disconnected careers, and draw a thread that links them all together, and explain how they ultimately brought me back to a career in Physics… Shhh… don’t tell them I’m an Engineer!

Mathematical Physics

Igor Bray, John Curtin Distinguished Professor

Atomic and Molecular collisions: what are they and what are they good for?

Collisions on the atomic scale go on all around us and inside us. All chemical reactions are examples of such collisions. Accordingly there is no shortage of applications that benefit from their quantitative understanding. However, such collisions are particularly difficult to calculate. The target atoms and molecules have a countably infinite number of discrete states and an uncountably infinite continuum. The interactions extend out to infinite distances making the mathematical formulation and computation particularly complicated. With the advance of supercomputers these problems have been solved. Using animations the talk will explain the range of collision processes and their applications involving matter and antimatter. Examples will include generating abundant clean energy for mankind through fusion energy with sea-water as fuel through to cancer imaging and therapy.


James Miller-Jones, Associate Professor

Black holes - the amazing power of gravity

While we think of black holes as cosmic vacuum cleaners, it turns out that they are in fact powerful cosmic engines, being extremely efficient at converting energy from infalling matter into both radiation and powerful outflows. The feedback effect of these outflows can have a major role in shaping the surroundings of the most massive black holes, either triggering or suppressing the formation of new stars, and even affecting the way that their host galaxies evolve. In this talk I will explore the topic of black holes, discussing what they are, how we study them, and what effect they have on the Universe at large. I will discuss a few high-profile research projects in black hole physics, including the detection of gravitational waves from two merging black holes by the LIGO consortium, and the Event Horizon Telescope project to image the shadow of a black hole. I will conclude by discussing how the Square Kilometre Array radio telescope will enhance our understanding of these exotic objects.

Gemma Anderson, Research Associate

The Explosive Radio Universe

The Universe is an extremely dynamic place, ever changing through the life and death of stars. As an observational astronomer, I use Australian radio telescopes to study the radio radiation from the most extreme astronomical explosions in our Universe. Such explosions include the death of massive stars known as a “supernovae”, which can form black holes, the densest objects known. A black hole’s gravity is so powerful that it can pull material off a nearby star, resulting in bright radio outbursts. Observing this radio emission allows me to study the extreme gravity environments around black holes, observe exploded material that can be travelling at near the speed of light, and learn about the lifecycle of stars.

Andrew Williams, Instrument Engineer M&C

Discovering Planets from Perth

Before 1992, nobody knew for sure if any other stars (apart from our Sun) had planets orbiting around them. After that first discovery, better technology and new ways of searching for planets paid off, and now there are almost 4000 known planets outside our Solar System. I’ll describe the various ways of searching for planets, including gravitational microlensing – using the gravity of a distant star to act as a giant natural telescope. At Perth Observatory, I was part of a big international collaboration from 1996-2013 that used gravitational microlensing to discover around a dozen planets, including one of the most Earth-like planets ever found.

The guts of a radio telescope

The Murchison Widefield Array (MWA) is a radio telescope 800 km North-East of Perth that has no moving parts, just thousands of antennae that look like an army of knee-high metal spiders. It can electronically ‘point’ at any place in the sky to capture radio signals from that direction, without any actual moving parts. I’ll talk about how the MWA electronics and software works – how we can point a telescope without physically moving it, how and why we process the data, and what we do with it. I’ll also describe what it’s like to work on the MWA, and how the MWA’s success has led to a much bigger radio telescope coming to WA: The Square Kilometre Array.

Building and racing a solar car from Darwin to Adelaide

The World Solar Challenge (WSC) is an international competition to build and race electric cars powered entirely by sunlight over a 3000 km course between Darwin and Adelaide. The first race was in 1987, and it is now run every second year. In the late 1990’s, I was part of a group of friends who came together to build ‘Sungroper’, the first entrant from Western Australia. We raced Sungroper in the 2001 and 2003 WSC races, then passed the car on to Leeming High School and helped them work on it and race it in 2005. I’ll talk about what it was like to help build and race Sungroper over 3000 km of Australian roads.

Katarina Miljkovic, Senior Research Fellow

InSight mission on Mars

More than 30 years later since the first and last seismometer on Mars, the NASA InSight mission has placed the first operational seismometer on the surface of Mars a few months ago. Since its deployment, the seismometer has been eagerly listening for shakes and quakes. The story of this mission, what are possible seismic sources on Mars, and some of early results of seismic noise on Mars will be presented.

Impact! The sculptor of lunar and planetary surfaces

When you look up in the sky and see the Moon, you’d notice some areas appear darker. These are some of the largest impact craters in the solar system. If you’d look through a small telescope, you’d see lots more smaller craters on the lunar surface. What is their origin? Why isn’t Earth like that? Are Earth and the Moon the same system? These, and other questions, will be covered along with a historical overview and grand importance of Apollo missions and the soil samples they brought back to Earth.

Materials Science

Irene Suarez-Martinez, Senior Research Fellow

The Carbon World - from nanoscale to gems and pencils

Carbon is a “magical” element. Not only is it the basis of life and much of chemistry, carbon is also the building block for exciting new materials. Humans have long known that graphite and diamond are made from carbon atoms, but in the last 25 years a plethora of new nanoscale carbon materials have been discovered, and two Nobel Prizes have been awarded (Chemistry,1996 and Physics, 2010). In this talk we will investigate the world of carbon materials, spanning materials you can hold in your hand to molecules that can only be seen with electron microscopes. Everyone has used graphite for writing and seen diamond in jewellery, but there is a whole other industry of carbon materials used in electronics, filters, hard-disks and bio-technology. We will show how these materials were discovered and explain why they have revolutionised materials science. We will also attempt to reproduce the 2010 Nobel Prize using sticky tape!

Nigel Marks, Associate Professor

Radiation and Radioactivity

The discovery of radioactivity in 1896 is one of the transformational discoveries in Physics. Prior to then, atoms were classed as fixed entities that simply rearranged themselves via chemical processes. Today, radiation and radioactivity have innumerable scientific, medical and engineering applications, and are also associated with complex social and political problems relating to nuclear energy and nuclear weapons. In this talk we will delve into the hidden world of nuclear physics, including the natural radiation that surrounds us, a 2-billion year-old natural fission reactor in Africa, and the elusive neutrino that can pass through a light year of lead. In a reminder that the future is not yet written, we will ponder five diverse questions about radioactivity that remain unanswered.