Iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts for fuel cells

Qingfeng Li
Yang Hu, Lijie Zhong, Lars N. Cleemann and Jens Oluf Jensen
Technical University of DenmarkDK-2800, Kgs. Lyngby, Denmark

Outline

- Renewable energy in Denmark
- NPMCs – a brief yet long history
- A new type of active sites?
 - High pressure pyrolysis of volatile precursors
 - Hollow spherical structures of graphitic encapsulation
 - Iron Moieties – Fe₃C nanoparticles
 - Activity and Active Site Exploration
 - LT- and HT-PEMFC tests
- Carbon encapsulated Pt alloys
 - An Approach to Stabilizing Pt and its Alloys?
- Acknowledgement
Renewable Energy in Denmark:

2020 2030 2035 2050
Half of the traditional coal is phased out from Danish power plants. The electricity and heat supply covered by renewable energy. All energy supply – electricity, heat, industry and transport – is covered by renewable energy.

Windmills - an intermittent power source of 8760 hours of 2015
- 1460 hours West Denmark produces more than 100% power consumed
- 65 hours with negative prices (to turn off the wind turbines)

Wind Power Production and Net Exports, Western Denmark 2002

- Fluctuating with no warning in shorter or longer terms
- Fluctuating span over 50% of the primary power capacity
- A giga watt level of grid levelling

Updated 2016.01.15
The Hydrogen Chain
- a Danish strategy

Electrolyser (20 MPa CGH₂)

Windmill

Electrolysers & fuel cells

Truck to deliver (20 MPa CGH₂)

H₂ Station (stored 40 MPa)

FC vehicles (CGH₂ 35MPa)

The Hydrogen Chain

Conclusions:
- Significant reduction of PGM or non-precious metal catalyst

Based on current technology, planned for commercialization in the 2016 time frame:
- $280/kW for 20,000 units/year volume

Table 2. Key Assumptions of Cost Analyses and Resulting Cost

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Units</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack power</td>
<td>kW</td>
<td>90</td>
<td>90</td>
<td>88</td>
<td>88</td>
<td>89</td>
<td>88</td>
<td>89</td>
</tr>
<tr>
<td>System power</td>
<td>kW</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Cell power density</td>
<td>kW/ft²</td>
<td>563</td>
<td>715</td>
<td>833</td>
<td>833</td>
<td>1,110</td>
<td>984</td>
<td>692</td>
</tr>
<tr>
<td>Peak stack temperature</td>
<td>°C</td>
<td>70.00</td>
<td>80.00</td>
<td>80.00</td>
<td>90.00</td>
<td>90.00</td>
<td>87.00</td>
<td>97.00</td>
</tr>
<tr>
<td>PGM loading</td>
<td>mg/cm²</td>
<td>0.35</td>
<td>0.25</td>
<td>0.15</td>
<td>0.15</td>
<td>0.19</td>
<td>0.20</td>
<td>0.15</td>
</tr>
<tr>
<td>PGM total content</td>
<td>g/kW</td>
<td>0.6</td>
<td>0.35</td>
<td>0.18</td>
<td>0.18</td>
<td>0.17</td>
<td>0.20</td>
<td>0.23</td>
</tr>
<tr>
<td>PGM total content</td>
<td>g/kW</td>
<td>0.68</td>
<td>0.39</td>
<td>0.20</td>
<td>0.20</td>
<td>0.19</td>
<td>0.22</td>
<td>0.25</td>
</tr>
<tr>
<td>Pt cost</td>
<td>$/troy</td>
<td>1.100</td>
<td>1.100</td>
<td>1.100</td>
<td>1.100</td>
<td>1.100</td>
<td>1.100</td>
<td>1.500</td>
</tr>
<tr>
<td>Stack cost</td>
<td>$/kW</td>
<td>50</td>
<td>54</td>
<td>27</td>
<td>27</td>
<td>24</td>
<td>20</td>
<td>37</td>
</tr>
<tr>
<td>Balance of plant cost</td>
<td>$/kW</td>
<td>42</td>
<td>57</td>
<td>35</td>
<td>25</td>
<td>26</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>Sys. Asy. and Testing</td>
<td>$/kW</td>
<td>2.2</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>System cost</td>
<td>$/kW</td>
<td>94</td>
<td>73</td>
<td>61</td>
<td>51</td>
<td>49</td>
<td>47</td>
<td>55</td>
</tr>
</tbody>
</table>
M-Nₓ/C catalysts
- a brief yet long history

The heme group of cytochromes exhibits electronic conductivity via inter-conversion between Fe²⁺ and Fe³⁺
- a capability of performing oxidation and reduction within the cell membranes

![Porphyrin substituted porphines](image1)

Cytochrome C

M₂⁺ - MgII, CoII, FeII

1964, R. Jasinski
Nature, March 12, 1964
Activity towards ORR in alkaline

- Metals as active sites for ORR
 - Co & Fe the best
- Ring substitute groups

Separated metal ion, nitrogen, and carbon precursors
Yeager et al., J. Appl. Electrochem., 1989

Heat-treatment of metal macrocycles
- 500–900 °C in inert gas
Dedelet et al., 2002

A long way to achieve the status

Conclusive remarks of earlier work
- Metal macrocycle complexes - expensive
- Moderate ORR activity
- Poor stability
- H₂O₂ formation and attack
- Metal leaching out of macrocyclic complexes
Synthesis of “Modern” NPMCs
- Pyrolysis of separate M-, N- and C- precursors

Metal sources

<table>
<thead>
<tr>
<th>Metal sources</th>
<th>Nitrogen sources</th>
<th>Carbon sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcycle: Fe, FeC, FeP, FePc, FeT, FeCIP, FeCIP, FeCIP, FeCIP</td>
<td>Organic: Ethylenediamine, 1,10-Phenanthroline, Nitroaniline, Ammonia, HCN, Cyanamide</td>
<td>Ketjen black EC-600JD (Akzo Nobel)</td>
</tr>
<tr>
<td>Inorganic salts: Fe, Mn, Co</td>
<td>Inorganic salts: Fe, Mn, Co</td>
<td>Acetylene black (Chevron)</td>
</tr>
<tr>
<td>Organometallic complex: Ferrocene, CoPc, CoPc, CoPc, CoPc</td>
<td>Organopolymer: Polyvinylpyridine</td>
<td>Vulcan XC-72R (Cabot)</td>
</tr>
<tr>
<td>Microcycle: Co, Co, Co, Co, Co</td>
<td>Inorganic salts: Co, Co, Co, Co, Co</td>
<td>Black Pearls 2000 (Cabot)</td>
</tr>
<tr>
<td>Inorganic salts: Co, Co, Co, Co, Co</td>
<td>Organic: Ammonium iron sulfate</td>
<td>…….</td>
</tr>
</tbody>
</table>

Metal precursor

Nitrogen precursor

Carbon support

ORR activities of M–Nx/C catalyst
- strongly dependent on precursors
- heat-treatment temperatures
- carbon support morphologies
- synthetic approaches

One significant approach – by Dodelet et al. Quebec, Ca. Science 2009

NH₃ as N precursor in atmosphere
- super activity
- however poor stability

Hypothesis I:
• Active sites are of type Me-Nₓ/C species
• Metals play a central role in catalysis

Using polypyrrrole to entrap Co - to mimic cobalt porphyrins to develop Co-N sites

Debates of Catalytic active sites

Active sites:
N-doped carbon without the participate of metal ion

Hypothesis II:
- Active sites are of type of N_x/C species
- Metals catalyze the formation of C-N functionalities (pyridinic/quaternary nitrogen)

One thing seems clear:
Nitrogen is involved in the central active sites

What is interesting:
We find another type of NPMCs where NITROGEN plays a trivial role...

Synthesis of NPMCs

Variations
- each of three precursors
- ratios of precursors
- pre-mixing techniques

Precursors
- A metal source: metal salts
- A nitrogen source: NH₃ or cyanamide or heterocyclic compounds/polymers
- A carbon source: microporous carbon blacks, CNTs, etc.

Pyrolysis at elevated temperatures under ambient pressure
- The heat-treatment temperature
- Duration & atmospheres
- Subsequent heat-treatments

Challenging issues
- Nature of active sites
 - Nitrogen involved sites, coordinated with metal atoms?
- Enhanced activity
 - and long term durability
- Electrode engineering
 - Thick catalyst layers:
 - Volumetric activity / high catalyst loading
 - Conductivity; Ionomer; Porosity

High pressure pyrolysis
An approach to higher active site density?

Swagelok like reactor
- Gold lining coating
- Quartz tubing
- Up to 900°C
- > 200 bar
 - tailored by volume/charge
 - checked by mass change
 - solid yield
 - all in an inert atmosphere

Critical point
274°C, 217 atm
High pressure pyrolysis

- **Limited decomposition/evaporation** due to pressure buildup
- **Close system**
 - no removal of gas products
 - little morphology change of condensed phase
 - low porosity products
 - no carbon substrate added
 - volatile small molecule precursors

A new type of NPMC?

- Hollow spheres of curved CNTs

Fe₃C/C-700
Little surface nitrogen!
Tailoring pressures
- amount of precursors
- tightening reactors

Morphologies
- spheres
- loose powders

Graphene wrapped particles
Favored at lower pressures
Favored at higher pressures

Nanotube wrapped particles

The iron moieties
- Nanoparticles
 ca. 10 nm
- Iron carbides

The iron moieties
- Nanoparticles
 ca. 10 nm
- Iron carbides
Iron moieties survived the acid leaching in 0.5M H$_2$SO$_4$/80°C/8h.

The extraordinary stability in acid media of the Fe$_3$C nanoparticles originates from the isolation by the carbon layers - but with no barrier effect on activity!

Further evidence of wrapping

Little ferrous functionalities On surface

Little surface site complexing with thiocyanate SCN$^-$

20% Pt/C - in 0.1M HClO$_4$ - + 5mM SCN$^-$

Fe$_3$/C-700 - in 0.1M HClO$_4$ - + 5mM SCN$^-$

5mM NaSCN Blank
Electrochemical activity towards ORR

- Excellent ORR activity, stability, nearly four-electron pathway in both alkaline and acid solutions.

High pressure pyrolysis
- at varied temperatures
- Spheres changed little in size
- N functionalities above 600 °C
High pressure pyrolysis
- at varied temperatures

Transition from 630 to 800 °C
- Varied N contents from 9 – 0.5 at%
- Significant formation of Fe₃C
- Remaining ORR activity

Iron phases identified
◆ α-Fe
◆ γ-Fe
◆ Ferrocene
◆ Fe₂O₃
◆ Fe₃N/C (LS)
◆ Fe₃C

57Fe-Mössbauer spectra

Phase composition varied
◆ Fe₃C content peaked
◆ Metallic phases steadily increased
◆ Fe-N coordination steadily decreased

Pyrolyzing at 700°C for 75 min
Correlation of electrochemical activity with iron containing components

- Good correlation with Fe-N phase - in a narrow range and with a saturation effect
- Good correlation with Fe$_3$C - through the wide range studied

Active site exploration

- Structure dependence
- Ball-milling and acid leaching
 - Fe$_3$C
 - isolated by carbon layers
 - super stability in acidic media
 - contributing to ORR activity
 - C-wrapped Fe$_3$C structure
 - synergies of Fe$_3$C and C
Summary

Hollow microspheres
- Uniform core Fe₃C nanoparticles
- Wrapping layers of graphene/CNTs
- Little surface functionalities of N/Fe

Synergetic mechanism
- Graphitic layers stabilized Fe₃C particles against acid leaching – chemical stability without depriving of catalytic activity
- Graphitic layers activated by wrapped particles

Nitrogen functionalities
- present in low temperature samples?

Preliminary fuel cell test
- Nafion cells at 80 °C
- PBI cells 120-180 °C
- Promising durability

- Nafion cell test at 80 °C
- Humidified H₂-O₂
- 0 – 2 - 7.7 – 26 – 50 hours
- Catalyst loading 3.95 mg cm⁻²

- H₃PO₄ doped PBI membrane
- Dry H₂-air operation
- Ambient pressure
- Fe₃C/C loading 3.9 mg cm⁻²

Chenitz et al.
Summary

- Prohibitive cost of PGM catalysts
- Significant progress on NPMC
 - Synthesis
 - Active site debate
 - Density of active sites – activity vs. stability
- High pressure pyrolysis
 - Volatile precursors
 - Simultaneous formation of metal moities and graphene layers
 - Synergy mechanism of encapsulated catalysts?
 - Separation of activity and stability?
 - An approach to stabilizing Pt alloys?

Carbon encapsulated Pt alloys?

- Uniform PtFe nanoparticles 10-20 nm buried in carbon
- FeN_x sites by N-1s and Fe-2p XPS (ca. 2.9 at% N and 0.2 at%Fe) which are catalytically active

<table>
<thead>
<tr>
<th>wt%</th>
<th>Fe</th>
<th>Pt</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDS</td>
<td>6.76</td>
<td>8.13</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>7.14</td>
<td>8.92</td>
</tr>
</tbody>
</table>

\[
\text{PtFe}_{2.4} = \text{PtFe} + \text{FeN}_x + \text{Fe}_3\text{C} + \text{Fe}?
\]
Carbon encapsulated Pt

- XRD: PtFe alloy phase
- Pt-4f XPS:
 - At least partly buried
- N\textsubscript{2}-CV:
 - no H ad-/desorption peaks
- CO stripping
 - 10\% Pt surface area of JM-Pt/C
 - lower CO stripping potential
- Aqua Regia-ICP MS
 - more than half of PtFe particles encapsulated in carbon survived

Compared with Pt/C catalyst
- higher mass-specific activity
- much higher area-specific activity
- good stability by AST test.
Carbon-film encapsulated iron based catalysts (CF-Fe)

▲ The nature of active sites for CF-Fe catalysts is still unclear
▲ FeNPS, Fe₃C, Fe-N₄, Fe/Fe₃C

Financial support
- Danish Council for Strategic Research
 - 4M Center
 - Non-Precious
- the PSO – F&U Foundation
 - CatBooster
 - UpCat
<table>
<thead>
<tr>
<th>Year</th>
<th>temp. °C</th>
<th>Structure*</th>
<th>Characterization</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013, Chung et al.</td>
<td>950</td>
<td>Fe@CNT/CNP(N)</td>
<td>ORR-alkali</td>
</tr>
<tr>
<td>2013, Deng et al.</td>
<td>350, 600</td>
<td>Fe@CNT; Fe@CNT(N)</td>
<td>ORR-acid</td>
</tr>
<tr>
<td>2015, Yang et al.</td>
<td>800</td>
<td>Fe₂C@CNT</td>
<td>ORR-alkali@acid</td>
</tr>
<tr>
<td>2014, Deng et al.</td>
<td>425~600</td>
<td>CoNi@NC</td>
<td>HER-acid</td>
</tr>
<tr>
<td>2016, Cui et al.</td>
<td>700</td>
<td>Fe@NC</td>
<td>OER-alkali</td>
</tr>
<tr>
<td>2015, Wei et al.</td>
<td>800 ~ 950</td>
<td>Fe₂C@C-FeNₓ</td>
<td>ORR-alkali@acid</td>
</tr>
<tr>
<td>2014, Yang et al.</td>
<td>700, 800</td>
<td>Fe₂C@C</td>
<td>ORR-acid@alkali</td>
</tr>
<tr>
<td>2015, Tavakkoli et al.</td>
<td>1100</td>
<td>Fe@C</td>
<td>HER-acid</td>
</tr>
<tr>
<td>2015, Strickland et al.</td>
<td>1050</td>
<td>Fe-FexC@CNₓ</td>
<td>ORR-acid@alkali</td>
</tr>
</tbody>
</table>

Structure: Fe@CNT, Fe@CNT(N), Fe@CNT(N), Fe₂C@CNT, CoNi@NC, Fe@NC, Fe₂C@C-FeNₓ, Fe₂C@C, Fe@C, Fe-FexC@CNₓ

Characterization: ORR-alkali, ORR-acid, ORR-alkali@acid, HER-acid, OER-alkali, ORR-alkali@acid, ORR-acid@alkali, HER-acid, ORR-acid@alkali